15 research outputs found

    New results on finite-/fixed-time synchronization of delayed memristive neural networks with diffusion effects

    Get PDF
    In this paper, we further investigate the finite-/fixed-time synchronization (FFTS) problem for a class of delayed memristive reaction-diffusion neural networks (MRDNNs). By utilizing the state-feedback control techniques, and constructing a general Lyapunov functional, with the help of inequality techniques and the finite-time stability theory, novel criteria are established to realize the FFTS of the considered delayed MRDNNs, which generalize and complement previously known results. Finally, a numerical example is provided to support the obtained theoretical results

    A Robust Memristor-Enhanced Polynomial Hyper-Chaotic Map and Its Multi-Channel Image Encryption Application

    No full text
    Nowadays, the utilization of memristors to enhance the dynamical properties of chaotic systems has become a popular research topic. In this paper, we present the design of a novel 2D memristor-enhanced polynomial hyper-chaotic map (2D-MPHM) by utilizing the cross-coupling of two TiO2 memristors. The dynamical properties of the 2D-MPHM were investigated using Lyapunov exponents, bifurcation diagrams, and trajectory diagrams. Additionally, Kolmogorov entropy and sample entropy were also employed to evaluate the complexity of the 2D-MPHM. Numerical analysis has demonstrated the superiority of the 2D-MPHM. Subsequently, the proposed 2D-MPHM was applied to a multi-channel image encryption algorithm (MIEA-MPHM) whose excellent security was demonstrated by key space, key sensitivity, plaintext sensitivity, information entropy, pixel distribution, correlation analysis, and robustness analysis. Finally, the encryption efficiency of the MIEA-MPHM was evaluated via numerous encryption efficiency tests. These tests demonstrate that the MIEA-MPHM not only possesses excellent security but also offers significant efficiency advantages, boasting an average encryption rate of up to 87.2798 Mbps

    Strain distribution of repaired articular cartilage defects by tissue engineering under compression loading

    No full text
    Abstract Background It is difficult to repair cartilage damage when cartilage undergoes trauma or degeneration. Cartilage tissue engineering is an ideal treatment method to repair cartilage defects, but at present, there are still some uncertainties to be researched in cartilage tissue engineering including the mechanical properties of the repaired region. Methods In this study, using an agarose gel as artificial cartilage implanted into the cartilage defect and gluing the agarose gel to cartilage by using the medical bio-adhesive, the full-thickness and half-thickness defects models of articular cartilage in vitro repaired by tissue engineering were constructed. Strain behaviors of the repaired region were analyzed by the digital correlation technology under 5, 10, 15, and 20% compressive load. Results The axial normal strain (Ex) perpendicular to the surface of the cartilage and lateral normal strain (Ey) as well as shear strain (Exy) appeared obviously heterogeneous in the repaired region. In the full-defect model, Ex showed depth-dependent strain profiles where maximum Ex occurs at the low middle zone while in the half-defect mode, Ex showed heterogeneous strain profiles where maximum Ex occurs at the near deep zone. Ey and Exy at the interface site of both models present significantly differed from the host cartilage site. Ey and Exy exhibited region-specific change at the host, interface, and artificial cartilage sites in the superficial, middle, and deep zones due to the artificial cartilage implantation. Conclusion Both defect models of cartilage exhibited a heterogeneous strain field due to the engineered cartilage tissue implant. The abnormal strain field can cause the cells within the repaired area to enter complex mechanical states which will affect the restoration of cartilage defects

    Deep Penetration of Targeted Nanobubbles Enhanced Cavitation Effect on Thrombolytic Capacity

    No full text
    Sonothrombolysis with microbubbles can enhance the dissolution of thrombus through the cavitation effect of microbubbles under ultrasound irradiation. However, the detailed mechanism of thrombolysis with microscaled or nanoscaled bubbles is still not so clear. This study compared the thrombolytic capacity of cRGD-targeted or nontargeted bubbles with different particle sizes combined with urokinase (UK). The size of the microscaled bubbles (Mbs or Mbs-cRGD) was mostly approximately 3 mu m, while the nanoscaled bubbles (Nbs or Nbs-cRGD) were mainly around 220 nm. In vitro testing was performed on an extracorporeal circulation device that mimics human vascular thromboembolism. The rabbit clots in Mbs with UK groups showed peripheral worm-like dissolution, while the clots in Nbs with UK groups showed internal fissure-like collapse. In addition, the thrombolysis rate of Nbs-cRGD with the UK group was the highest. Furthermore, the scanning electron microscopic images showed that the fibrin network was the most severely damaged by the Nbs-cRGD, and most of the fibrin strands were dissolved. Especially, the Nbs-cRGD can penetrate much deeper than Mbs-cRGD into the thrombus and loosen the fibrin network. Taken together, benefiting from the specific identification and deep penetration to thrombus, our developed novel targeted Nbs may have broad application prospects in the clinic

    The Diagnostic Value of PI-RADS v2.1 in Patients with a History of Transurethral Resection of the Prostate (TURP)

    No full text
    To explore the diagnostic value of the Prostate Imagingā€“Reporting and Data System version 2.1 (PI-RADS v2.1) for clinically significant prostate cancer (CSPCa) in patients with a history of transurethral resection of the prostate (TURP), we conducted a retrospective study of 102 patients who underwent systematic prostate biopsies with TURP history. ROC analyses and logistic regression analyses were performed to demonstrate the diagnostic value of PI-RADS v2.1 and other clinical characteristics, including PSA and free/total PSA (F/T PSA). Of 102 patients, 43 were diagnosed with CSPCa. In ROC analysis, PSA, F/T PSA, and PI-RADS v2.1 demonstrated significant diagnostic value in detecting CSPCa in our cohort (AUC 0.710 (95%CI 0.608ā€“0.812), AUC 0.768 (95%CI 0.676ā€“0.860), AUC 0.777 (95%CI 0.688ā€“0.867), respectively). Further, PI-RADS v2.1 scores of the peripheral and transitional zones were analyzed separately. In ROC analysis, PI-RADS v2.1 remained valuable in identifying peripheral-zone CSPCa (AUC 0.780 (95%CI 0.665ā€“0.854; p p = 0.594)). PSA and F/T PSA retain significant diagnostic value for CSPCa in patients with TURP history. PI-RADS v2.1 is reliable for detecting peripheral-zone CSPCa but has limited diagnostic value when assessing transitional zone lesions

    Active targeting nano-scale bubbles enhanced ultrasound cavitation chemotherapy in Y-1 receptor-overexpressed breast cancer

    No full text
    Ultrasound cavitation therapy has attracted much attention in recent years because the cavitation of microbubbles can be leveraged to boost the infiltration of chemotherapeutic drugs into cancer tissues. For breast cancer therapy, most of the previously reported microbubbles lack specific targeting capacity and permeability. In this study, we have successfully fabricated Y-1 receptor ligand (NPY)-modified bubbles, and examined their therapeutic efficacies as size-dependent functions with or without NPY targeting. To achieve this, four types of micro-scale bubbles (MBs or MBs-NPY) and nano-scale bubbles (NBs or NBs-NPY) were comprehensively evaluated. In vivo results indicated that the NBs-NPY group with doxorubicin (DOX) under ultrasound irradiation showed a high tumor suppression effect and a prolonged survival time. Furthermore, the NBs-NPY with DOX group exhibited minimal damage to mouse vital organs, which points to the considerable tolerance of the proposed nanosystem for efficacious breast cancer therapy. In summary, these findings suggest that the developed NPY-targeted NBs could have a broad application prospect in ultrasound cavitation chemotherapy of Y-1 receptor-overexpressed breast cancer

    Conductive Metalā€“Organic Framework Microelectrodes Regulated by Conjugated Molecular Wires for Monitoring of Dopamine in the Mouse Brain

    No full text
    Herein, we demonstrated a strategy to regulate the conductive metalā€“organic framework (MOF) surface, by the conjugated molecule wires for selective and sensitive determination of dopamine (DA) in the live brain. The MOFs were decorated at the carbon fiber electrode deposited by Au nanoleaves as the upper electric transducer to provide rich electrocatalytic sites for electron transfer of neurochemicals at the electrode surface, leading to greatly enhanced sensitivity for detection of neurochemicals. On the other hand, the conjugated molecular wire, 4-(thiophen-3-ylethynyl)-benzaldehyde (RP1), was synthesized and assembled as an underlying bridge to regulate the electrochemical processes at the MOF-based electrode, specifically decreasing the reaction Gibbs free energy of DA oxidation, thus selectively promoting the heterogeneous electron transfer of DA from the MOF layer to the electrode surface. Owing to the electrocatalytic activity for DA oxidation, the present microsensor exhibited high selectivity for real-time tracking of DA in a good linear relationship in the range of 0.004ā€“0.4 Ī¼M with a detection limit of 1 nM. Eventually, this functionalized electrode was successfully applied for in vivo monitoring of DA in mouse brains with Parkinsonā€™s disease (PD) model. The results indicated that the levels of DA were obviously decreased in both acute and subacute PD models. Moreover, the level of DA strongly depended on the amount of uric acid (UA), a physiological antioxidant, which rose as the UA amount was lower than 200 mg kgā€“1 but was downregulated again after treatment by a higher amount of UA

    Norcantharidin regulates ERĪ± signaling and tamoxifen resistance via targeting miR-873/CDK3 in breast cancer cells.

    No full text
    MiR-873/CDK3 has been shown to play a critical role in ERĪ± signaling and tamoxifen resistance. Thus, targeting this pathway may be a potential therapeutic approach for the treatment of ER positive breast cancer especially tamoxifen resistant subtype. Here we report that Norcantharidin (NCTD), currently used clinically as an ani-cancer drug in China, regulates miR-873/CDK3 axis in breast cancer cells. NCTD decreases the transcriptional activity of ERĪ± but not ERĪ² through the modulation of miR-873/CDK3 axis. We also found that NCTD inhibits cell proliferation and tumor growth and miR-873/CDK3 axis mediates cell proliferation suppression of NCTD. More important, we found that NCTD sensitizes resistant cells to tamoxifen. NCTD inhibits tamoxifen induced the transcriptional activity as well ERĪ± downstream gene expressions in tamoxifen resistant breast cancer cells. In addition, we found that NCTD restores tamoxifen induced recruitments of ERĪ± co-repressors N-CoR and SMRT. Knockdown of miR-873 and overexpression of CDK3 diminish the effect of NCTD on tamoxifen resistance. Our data shows that NCTD regulates ERĪ± signaling and tamoxifen resistance by targeting miR-873/CDK3 axis in breast cancer cells. This study may provide an alternative therapy strategy for tamoxifen resistant breast cancer
    corecore